Skip to main content

Business Statistics- Correlation Analysis

The correlation analysis refer to the techniques used measuring the closeness of the relationship between variables.

"Correlation analysis deals with the association between two or more variables."

1. Positive and Negative Correlation: whether correlation is positive or negative would depend upon the direction of change. i.e if as one variable is increasing the other, on an average is also increasing or if one variable is decreasing the other, on an average is also decreasing, correlation said to be positive. If on the other hand one variable is increasing, the other is decreasing or vice versa it is said to be negative correlation. e.g

1. Positive correlation:

X : 10   12   15   18 20                                                      X:  80   70    60   40   30

Y : 15    20   22  25 37                                                      Y:  50   44    30   20   10


2. Negative Correlation:

X:    20   30    40   60    80                                                  X:    100   90   60   40   30

Y:    40   30     22   15   10                                                   Y:     10    20   30   40    50 


2. Linear and Non-Linear (Curvilinear) Correlation: The distinction between linear and non-linear correlation is based upon the constancy of the ratio of change between the variables. If the amount of change in one variable tends to bear constant ratio to the amount of change in the other variable then the correlation said to be linear.


Methods of Studying Correlation

1. Scatter Diagram

2. Karl Pearson Coefficient of Correlation


1. Scatter Diagram: 

The more the points plotted are scattered over the chart, the lesser is the degree of correlation between the variables. The more the points plotted are closer to the line, the higher is the degree of correlation. The degree of correlation is denoted by “r”.

The following types of scatter diagrams tell about the degree of correlation between variable X and variable Y.

  1. Perfect Positive Correlation (r=+1): The correlation is said to be perfectly positive when all the points lie on the straight line rising from the lower left-hand corner to the upper right-hand corner.
    Scatter diagram-1
  2. Perfect Negative Correlation (r=-1): When all the points lie on a straight line falling from the upper left-hand corner to the lower right-hand corner, the variables are said to be negatively correlated.
    Scatter diagram-2
  3. High Degree of +Ve Correlation (r= + High): The degree of correlation is high when the points plotted fall under the narrow band and is said to be positive when these show the rising tendency from the lower left-hand corner to the upper right-hand corner.
    Scatter diagram-3
  4. High Degree of –Ve Correlation (r= – High): The degree of negative correlation is high when the point plotted fall in the narrow band and show the declining tendency from the upper left-hand corner to the lower right-hand corner.
    Scatter diagram-4
  5. Low degree of +Ve Correlation (r= + Low): The correlation between the variables is said to be low but positive when the points are highly scattered over the graph and show a rising tendency from the lower left-hand corner to the upper right-hand corner.
    Scatter diagram-5
  6. Low Degree of –Ve Correlation (r= + Low): The degree of correlation is low and negative when the points are scattered over the graph and the show the falling tendency from the upper left-hand corner to the lower right-hand corner.
    Scatter diagram-6
  7. No Correlation (r= 0): The variable is said to be unrelated when the points are haphazardly scattered over the graph and do not show any specific pattern. Here the correlation is absent and hence r = 0.
    Scatter diagram-7

Thus, the scatter diagram method is the simplest device to study the degree of relationship between the variables by plotting the dots for each pair of variable values given. The chart on which the dots are plotted is also called as a Dotogram.


Que 1




Que 2






Que 3







Assignment 2: DOS (1/6/21)


Que 1 Calculate mode from the following data

Marks            No of Students

 0-10                       3
10-20                      5 
20-30                      7
30-40                     10
40-50                     12
50-60                     15
60-70                     12
70-80                       6
80-90                       2
90-100                     8


Que 2  Calculate Mean Deviation 

   X

3000
4000
4200
4400
4600
4800
5800

Que 3 Find out standard deviation from the following distribution

    X         f

20-25     170
25-30     110
30-35       80
35-40       45
40-45       40
45-50       35


Que 4 Calculate coefficient of correlation from the following data 

 X             f

100          30
200          50
300          60
400          80
500          100
600          110
700          130


Popular posts from this blog

เจ‡เจจੋเจธੈਂเจŸ เจนਾเจฐเจŸเจธ เจ•ਾเจฒเจœ เจ†เฉž เจเจœੁเจ•ੇเจถเจจ เจœเจฒੰเจงเจฐ เจชੋเจธเจŸเจฐ เจฎੈเจ•ਿੰเจ— เจฎੁเจ•ਾเจฌเจฒੇ เจตਿੱเจš เจชเจนਿเจฒੇ เจธเจฅਾเจจ เจคੇ

เจ‡เจจੋเจธੈਂเจŸ เจนਾเจฐเจŸเจธ เจ•ਾเจฒเจœ เจ†เฉž เจเจœੁเจ•ੇเจถเจจ เจฆੇ เจตਿเจฆਿเจ†เจฐเจฅੀ-เจ…เจงਿเจ†เจชเจ•ਾਂ เจจੇ 23 เจœเจจเจตเจฐੀ 2019 เจจੂੰ เจขਿเจฒเจตਾਂ เจฆੇ เจกਿเจชเจธ เจ•ਾเจฒเจœ เจ†เฉž เจเจœੁเจ•ੇเจถเจจ เจตਿเจ–ੇ เจ†เจฏੋเจœਿเจค เจ…ੰเจคเจฐ เจ•ਾเจฒเจœ เจฎੁเจ•ਾเจฌเจฒੇ เจตਿੱเจš เจญਾเจ— เจฒਿเจ†। เจตਿเจฆਿเจ†เจฐเจฅੀเจ†ਂ เจฆੀ เจถเจ–เจธੀเจ…เจค เจฆੇ เจธเจนਿ-เจตਿੱเจฆਿเจ…เจ• เจชเจนਿเจฒੂเจ†ਂ เจฆੇ เจตਿเจ•ਾเจธ เจจੂੰ เจงਿเจ†เจจ เจตਿੱเจš เจฐੱเจ–เจฆੇ เจนੋเจ เจธਾเจฐੇ เจตਿเจฆਿเจ†เจฐเจฅੀเจ†ਂ เจจੂੰ เจ…เจœਿเจนੀเจ†ਂ เจ—เจคੀเจตਿเจงੀเจ†ਂ เจตਿੱเจš เจนਿੱเจธਾ เจฒੈเจฃ เจฒเจˆ เจช੍เจฐੇเจฐਿเจค เจ•ੀเจคਾ เจœਾਂเจฆਾ เจนੈ เจ…เจคੇ เจนเจฐੇเจ• เจธเจนਿ-เจชਾเจ เจ•੍เจฐเจฎ เจ†เจˆเจŸเจฎ เจฒเจˆ เจธਿเจ–เจฒਾเจˆ เจฆਿੱเจคੀ เจœਾਂเจฆੀ เจนੈ। เจฆਿเจ•เจถਾ เจค੍เจฐੇเจนเจฃ เจฌੀ.เจੱเจก เจธเจฎੈเจธเจŸเจฐ-4 เจฆੀ เจตਿเจฆਿเจ†เจฐเจฅੀ-เจ…เจงਿเจ†เจชเจ• เจจੇ เจชੋเจธเจŸเจฐ เจฎੇเจ•ਿੰเจ— เจตਿੱเจš เจชเจนਿเจฒਾ เจธเจฅਾเจจ เจช੍เจฐਾเจชเจค เจ•ੀเจคਾ। เจœੈเจธเจฎੀเจจ เจฎเจนਾเจœเจจ เจฌੀ.เจੱเจก เจธเจฎੈเจธเจŸเจฐ-2 เจจੇ เจกੇเจ•เจฒਾเจฎੇเจถเจจ เจฎੁเจ•ਾเจฌเจฒੇ เจตਿੱเจš เจฆੂเจœਾ เจ‡เจจਾเจฎ เจช੍เจฐਾเจชเจค เจ•ੀเจคਾ। เจฎੈเจจੇเจœเจฎੈਂเจŸ เจช੍เจฐਿੰเจธੀเจชเจฒ เจ…เจคੇ เจ…เจงਿเจ†เจชเจ•ਾਂ เจ…เจคੇ เจฎੈਂเจฌเจฐਾਂ เจจੇ เจนਿੱเจธਾ เจฒੈเจฃ เจตਾเจฒਿเจ†ਂ เจฆੀ เจถเจฒਾเจ˜ਾ เจ•ੀเจคੀ เจ…เจคੇ เจ‰เจนเจจਾਂ เจฆੇ เจตเจงੀเจ† เจช੍เจฐเจฆเจฐเจถเจจ เจฒเจˆ เจœੇเจคੂเจ†ਂ เจจੂੰ เจตเจงਾเจˆ เจฆਿੱเจคੀ।

Business Statistics-Measure of Central Value (Arithmetic Mean, Harmonic Mean & Geometric mean)

The measurement of central value is also known as average. For example we often talk about the average height or average life of an Indian etc.   Types of Average Arithmetic Mean, Harmonic Mean, Geometric Mean  (1) Individual Observation (2) Discrete Series (3) Continuous series (a) Simple Arithmetic Mean      Que. 1 Calculate the Arithmetic Mean-With Individual Series  Que. 2 Calculate the Arithmetic Mean-With Discrete Series Que. 3. Calculate the Arithmetic Mean-With Continuous Series Geometric Mean Que 1  Que 2 Geometric Mean Discrete Series Geometric Mean  Continuous Series Harmonic Mean   Que 1  With Discrete Series Que 2  With Continuous Series                                                                              = 30...